
Chapter 1

Critical Phenomena

The aim of this introductory chapter is to introduce the concept of a phase transition and to
motivate the subject of statistical field theory. Here we introduce the concept of universality
as applied to critical phenomena and define some of the notation used throughout these
lectures.

1.1 Collective Phenomena: from Particles to Fields

It is rare in physics to find examples of interacting many-particle systems which admit to
a full and accessible microscopic description. More useful is a hydrodynamic description
of the collective long-wavelength behaviour which surrenders information at the micro-
scopic scale. A familiar example is the Navier-Stokes equation of fluid dynamics. The
averaged variables appropriate to these length and time scales are no longer the discrete
set of particle degrees of freedom but rather slowly varying continuous fields describing the
collective motion of a macroscopic set of particles. Familiar examples include magnetic
spin-waves, and vibrational or phonon modes of an atomic lattice.

The most striking consequence of interactions among particles is the appearance of
new phases of matter whose collective behaviour bears little resemblance to that of a few
particles. How do the particles then transform from one macroscopic state to another?
Formally, all macroscopic properties can be deduced from the free energy or the partition
function. However, since phase transitions typically involve dramatic changes in response
functions they must correspond to singularities in the free energy. Since the canonical
partition function of a finite collection of particles is always analytic, phase transitions
can only be associated with infinitely many particles, i.e. the thermodynamic limit.
The study of phase transitions is thus related to finding the origin of various singularities
in the free energy and characterising them.

Consider the classical equilibrium statistical mechanics of a regular lattice of ‘one-
component’ or Ising ferromagnet (i.e. spin degrees of freedom which can take only two
values: ±1). When viewed microscopically, the development of magnetic moments on the
atomic lattice sites of a crystal and the subsequent ordering of the moments is a complex
process involving the cooperative phenomena of many interacting electrons. However, re-
markably, the thermodynamic properties of different macroscopic ferromagnetic systems
are observed to be the same — e.g. temperature dependence of the specific heat, sus-
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ceptibility, etc. Moreover, the thermodynamic critical properties of completely different
physical systems, such as an Ising ferromagnet and a liquid at its boiling point, show the
same dependence on, say, temperature. What is the physical origin of this Universality?

Suppose we take a ferromagnetic material and measure some of its material properties
such as magnetisation. Dividing the sample into two roughly equal halves, keeping the in-
ternal variables like temperature and magnetic field the same, the macroscopic properties
of each piece will then be the same as the whole. The same holds true if the process is re-
peated. But eventually, after many iterations, something different must happen because
we know that the magnet is made up of electrons and ions. The characteristic length
scale at which the overall properties of the pieces begins to differ markedly from those of
the original defines a correlation length. It is the typical length scale over which the
fluctuations of the microscopic degrees of freedom are correlated.
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Figure 1.1: Phase diagram of the Ising ferromagnet showing the average magnetisation M
as a function of magnetic field H and Temperature T . Following trajectory 1 by changing
the magnetic field at constant temperature T < Tc, the sample undergoes a first order
phase transition from a phase in which the average magnetisation is positive (i.e. ‘spin-
up’) to a phase in which the average is negative (i.e. ‘spin-down’). Secondly, by changing
the temperature at fixed zero magnetic field, the system undergoes a second order phase
transition at T = Tc whereupon the average magnetisation grows continuously from zero.
This second order transition is accompanied by a spontaneous symmetry breaking
in which the system chooses to be in either an up or down-spin phase. (Contrast this
phase diagram with that of the liquid-gas transition — magnetisation S → density ρ, and
magnetic field H → pressure.) The circle marks the region in the vicinity of the critical
point where the correlation length is large as compared to the microscopic scales of the
system, and ‘Ginzburg-Landau theory’ applies.

Now experience tells us that a ferromagnet may abruptly change its macroscopic be-
haviour when the external conditions such as the temperature or magnetic field are varied.
The points at which this happens are called critical points, and they mark a phase
transition from one state to another. In the ferromagnet, there are essentially two ways
in which the transition can occur (see Fig. 1.1). In the first case, the two states on either
side of the critical point (spin up) and (spin down) coexist at the critical point. Such tran-
sitions, involve discontinuous behaviour of thermodynamic properties and are termed
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first-order (c.f. melting of a three-dimensional solid). The correlation length at such a
first-order transition is generally finite.

In the second case, the transition is continuous, and the correlation length becomes
effectively infinite. Fluctuations become correlated over all distances, which forces the
whole system to be in a unique, critical, phase. The two phases on either side of the
transition (paramagnetic and ferromagnetic) must become identical as the critical point
is approached. Therefore, as the correlation length diverges, the magnetisation goes
smoothly to zero. The transition is said to be second-order.

The divergence of the correlation length in the vicinity of a second order phase tran-
sition suggests that properties near the critical point can be accurately described within
an effective theory involving only long-range collective fluctuations of the system. This
invites the construction of a phenomenological Hamiltonian or Free energy which is con-
strained only by the fundamental symmetries of the system. Such a description goes
under the name of Ginzburg-Landau theory. Although the detailed manner in which
the material properties and microscopic couplings of the ferromagnet influence the param-
eters of the effective theory might be unknown, qualitative properties such as the scaling
behaviour are completely defined.

From this observation, we can draw important conclusions: critical properties in the
vicinity of a both classical and quantum second order phase transitions fall into a limited
number of universality classes defined not by detailed material parameters, but by
the fundamental symmetries of the system. When we study the critical properties of
the Ising transition in a one-component ferromagnet, we learn about the nature of the
liquid-gas transition! (See below.) Similarly, in the jargon of statistical field theory, a
superconductor, with its complex order parameter, is in the same universality class as
the two-component or ‘XY Heisenberg’ ferromagnet. The analyses of critical properties
associated with different universality classes is the subject of Statistical field theory.

1.2 Phase Transitions

With these introductory remarks in mind, let us consider more carefully the classic ex-
ample of a phase transition involving the condensation of a gas into a liquid. The phase
diagram represented in Fig. 1.2a exhibits several important features and generic features
of a second order phase transition:

1. In the (T, P ) plane, the phase transition occurs along a line that terminates at a
critical point (Tc, Pc).

2. In the (P, v ≡ V/N) plane, the transition appears as a coexistence interval,
corresponding to a mixture of gas and liquid of densities ρg = 1/vg and ρl = 1/vl at
temperatures T < Tc.

3. Due to the termination of the coexistence line, it is possible to go from the gas phase
to the liquid phase continuously (without a phase transition) by going around the
critical point. Thus there are no fundamental differences between the liquid and gas
phases (i.e. there is no change of fundamental symmetry).
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Figure 1.2: Phase diagrams of (a) the liquid-gas transition, and (b) the ferromagnetic
transition. In each case the phase diagrams are drawn in two different planes. Notice the
similarity between the two (1/v ↔ m, P ↔ H). Isotherms above, below, and at Tc are
sketched.

From a mathematical perspective, the free energy of this system is an analytic
function in the (P, T ) plane except for some form of branch cut along the phase
boundary. Observations in the vicinity of the critical point further indicate that:

4. The difference between the densities of the coexisting liquid and gas phases vanishes
on approaching Tc, i.e. ρl → ρg as T → T−

c .

5. The pressure versus volume isotherms become progressively more flat on approach-
ing Tc from the high temperature side. This implies that the isothermal com-
pressibility, the rate of change of density with pressure, κT = −(1/V )∂V/∂P |T
diverges as T → T+

c .

6. The fluid appears “milky” close to criticality. This phenomenon, known as critical
opalescence suggests the existence of collective fluctuations in the gas at long
enough wavelengths to scatter visible light. These fluctuations must necessarily
involve many particles, and a coarse-graining procedure must be appropriate to
their description.

How does this phase diagram compare with the phase transition that occurs between
paramagnetic and ferromagnetic phases of certain substances such as iron or nickel. These
materials become spontaneously magnetised below a Curie temperature, Tc. Redrawn in
cross-section, the phase diagram of Fig. 1.1 is shown in Fig. 1.2b. There is a discontinu-
ity in magnetisation as the magnetic field, H goes through zero, and the magnetisation
isotherms, M(H) have much in common with the condensation problem. In both cases,
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a line of discontinuous transitions terminates at a critical point, and the isotherms ex-
hibit singular behaviour in the vicinity of this point. The phase diagram is simpler in
appearance because the symmetry H → −H ensures that the critical point occurs at
Hc = Mc = 0.

In spite of the apparent similarities between the magnetic and liquid-gas transition,
our intuition would suggest that they are quite different. Magnetic transitions are usually
observed to be second-order — that is, the magnetisation m, which plays the role of an
order parameter, rises continuously from zero below the transition. On the other hand,
our everyday experience of boiling a kettle of water shows the liquid-gas transition to be
first-order — that is, the order parameter, corresponding to the difference between the
actual density and the density at the critical point, ρ − ρc jumps discontinuously at the
critical point with an accompanying absorption of latent heat of vapourisation (implying
a discontinuous jump in the entropy of the system: QL = Tc∆S).

However, the perceived difference in behaviour simply reflects different paths through
the transition in the two cases. In a ferromagnet, the natural experimental path (b →
c → d in Fig. 1.3a) is one in which the external magnetic field takes the value H = 0.
For T > Tc, the average magnetisation is zero, while for T < Tc the magnetisation grows
continuously from zero. In a liquid, the natural path is one in which temperature is varied
at constant pressure (b′ → c′ → d′ in Fig. 1.3b). Along this path, there is a discontinuous
change in the density. This is the first-order boiling transition.

A path in the ferromagnetic (H, T ) plane analogous to the constant pressure path in
a fluid is shown in Fig. 1.3c. Along this path m is negative from b′ → c′ and then jumps
discontinuously to a positive value as the coexistence line is crossed and remains positive
from c′ → d′. It is clear that the path in a fluid that most closely resembles the H = 0
path in a magnet, which shows a second-order transition, is the one with density fixed at
its critical value ρc, i.e. the critical isochore (b → c → d in Fig. 1.3d).

1.3 Critical Behaviour

The singular behaviour in the vicinity of the critical point is characterised by a set of
critical exponents. These exponents describe the non-analyticity of various thermody-
namic functions. Remarkably transitions as different as the liquid/gas and ferromagnetic
transition can be described by the same set of critical exponents and are said to belong
to the same Universality class.

Those critical exponents most commonly encountered are defined below.

1.3.1 Order Parameter

By definition, there is more than one equilibrium phase on a coexistence line. As men-
tioned above, the order parameter is a thermodynamic function that is different in
each phase, and hence can be used to distinguish between them. For a (uniaxial) magnet,
the order parameter is provided by the total magnetisation M(H, T ), or magnetisation
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Figure 1.3: Comparison of the ferromagnetic phase transition with the liquid-gas transi-
tion. The different paths identified in the figure are discussed in the text.

density,

m(H, T ) =
M(H, T )

V

In zero field, m vanishes for a paramagnet and is non-zero in a ferromagnet (see Fig. 1.4),
i.e.

m(T, H → 0+) ∝
{

0 T > Tc,
|t|β T < Tc,

where t = (T −Tc)/Tc denotes the reduced temperature. The singular behaviour of the
order parameter along the coexistence line is therefore characterised by a critical exponent
β. The singular behaviour of m along the critical isotherm is governed by another another
exponent, δ (see Fig. 1.2)

m(T = Tc, H) ∝ H1/δ

The two phases along the liquid-gas coexistence line are differentiated by their density
allowing one to define ρ−ρc, where ρc denotes the critical density, as the order parameter.

1.3.2 Response Functions

The critical system is highly sensitive to external perturbations: for example, at the
liquid-gas critical point, the compressibility κT = −(1/V )∂V/∂P |T becomes infinite. The
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Figure 1.4: Critical behaviour of the magnetisation and response functions close to the
ferromagnetic transition.

divergence of the compressibility or, more generally, the susceptibility of the system
(i. e. the response of the order parameter to a field conjugate to it) is characterised by
another critical exponent γ. For example, in a magnet, the analogous quantity is the
zero-field susceptibility

χ±(T, H → 0+) =
∂m

∂H

∣∣∣
H=0+

∝ |t|−γ±

where, in principle, two exponents γ+ and γ− are necessary to describe the divergences on
the two sides of the phase transition. Actually, in almost all cases, the same singularity
governs both sides, and γ+ = γ− = γ.

Similarly, the heat capacity represents the thermal response function, and its singu-
larities at zero field are described by the exponent α,

C± =
∂E

∂T
∝ |t|α±

where E denotes the internal energy and, again, the exponents usually coincide α+ =
α− = α.

1.3.3 Long-range Correlations

Since the response functions are related to equilibrium fluctuations, their divergence in
fact implies that fluctuations are correlated over long distances. To see this let us consider
the magnetic susceptibility of, say, the Ising ferromagnet. The latter describes a lattice
of scalar or one-component spins which interact ferromagnetically with their neighbours.
Starting with the microscopic Ising Hamiltonian

HIsing = −J
∑

〈ij〉

σiσj ,

where {σi = ±1} denotes the set of Ising spins, M =
∑

i σi represents the total magneti-
sation, and sum

∑
〈ij〉 runs over neighbouring lattice sites, the total partition function1

1Throughout these notes 1/kBT and the symbol β (not to be mistaken for the order parameter
exponent) will be used interchangeably.
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takes the form

Z(T, h) =
∑

{σi}

e−β(HIsing−hM)

Here we have included an external magnetic field h, and the sum extends over the complete
set of microstates {σi}. From Z, the thermal average magnetisation can be obtained from
the equation

〈M〉 ≡
∂ lnZ
∂(βh)

=
1

Z
∑

{σi}

Me−β(HIsing−hM)

Taking another derivative one obtains the susceptibility

χ(T, h) =
1

V

∂〈M〉
∂h

=
β

V





1

Z
∑

{σi}

M2e−β(HIsing−hM) −



 1

Z
∑

{σi}

Me−β(HIsing−hM)




2



from which identifies the relation

V χ

β
= var(M) ≡ 〈M2〉 − 〈M〉2

Now the overall magnetisation can be thought of as arising from separate contributions
from different parts of the system, i.e. taking a continuum limit

M =

∫
dx m(x),

where m(x) represents the “local” magnetisation. Substituting this definition into the
equation above we obtain

kBTχ =
1

V

∫
dx

∫
dx′ [〈m(x)m(x′)〉 − 〈m(x)〉 〈m(x′)〉] .

Since the system is symmetric under spatial translation, 〈m(x)〉 is a constant m in-
dependent of position, while 〈m(x)m(x′)〉 = G(x − x′) depends only on the spatial sep-
aration. Thus, in terms of the ‘connected’ correlation function defined as Gc(x) ≡
〈m(x)m(0)〉c ≡ 〈m(x)m(0)〉 − m2, the susceptibility is given by

kBTχ =

∫
dx 〈m(x)m(0)〉c

The connected correlation function is a measure of how the local fluctuations in one
part of the system affect those in another. Typically such influences occur over a char-
acteristic distance ξ known as the correlation length (see Fig. 1.4). (In many cases,
the connected correlation function Gc(x) decays exponentially exp[−|x|/ξ] at separations
|x| > ξ.) If g ∼ m2 denotes a typical value of the correlation function for |x| < ξ, it
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follows that kBTχ < gξd where d denotes the dimensionality; the divergence of χ neces-
sarily implies the divergence of ξ. This divergence of the correlation length also explains
the observation of critical opalescence. The correlation function can be measured by
scattering probes, and its divergence

ξ±(T, H = 0) ∝ |t|−ν±

is controlled by exponents ν+ = ν− = ν.
This completes our preliminary survey of phase transitions and critical phenomena.

We found that the singular behaviour of thermodynamic functions at a critical point (the
termination of a coexistence line) can be characterised by a set of critical exponents.
Experimental observations indicate that these exponents are universal, independent of
the material, and to some extent of the nature of the transition. Moreover the divergence
of the response functions, as well as fluctuations, indicate that correlations become long-
ranged in the vicinity of this point. The fluctuations responsible for the correlations
involve many particles, and their description calls for a “coarse-graining” approach. In
the next chapter we will exploit this idea to construct a statistical field theory which
reveals the origin of the universality. To do so it will be convenient to frame our discussion
in the language of the magnetic system whose symmetry properties are transparent. The
results, however, have a much wider range of validity.
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